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Canonical heights on Pell conics
over number fields

M. Okazaki

Abstract. In [2], Lemmermeyer introduced the canonical
heights on the groups of rational points on Pell conics, which
are analogues of the canonical heights on elliptic curves. In this
paper, we generalize this: We introduce the canonical heights on
the groups of Q-rational points on Pell conics over number fields.
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Introduction

Let K be a number field, £ be an elliptic curve over K, and E(Q) be the set
of Q-rational points on E. It is well known that E(Q) is an abelian group.

To study the group E(Q), it is useful to define a good function that measures

a certain kind of arithmetic complexity of P € E(Q). This function is called
the canonical height, defined by

h(P) := lim h2"P)

n—o00 4n ’

where h(Q) = h(1,2(Q)) for each @ = (2(Q),y(Q)) € E(Q), and h is
the logarithmic Weil height on the projective line P*(Q) (we will recall the

definition of A in Section [I)).

We set a Pell conic C': X? —dY? = 2, where ¢,d € K. We denote by
C(F) the set of F-rational points on C, where F' C Q is any subfield with
K C F. For each P = (2(P),y(P)),Q = (2(Q),y(Q)) € C(F), we set

PiQ.= (x(P)x(Q) +dy(Py(Q) =(Py(Q) + x(@)y(P)) ‘

Cc C

Under this binary operation +, C(F') becomes an abelian group. The zero
of C(F)is O = (¢,0) and —(x,y) = (2, —y). P+ @ is the intersection of C'
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and the line which is through O and is parallel to the line PQ. If ) = P,
then we regard the line PP as the tangent line of C' at P. Thus, if F' C R,
we can describe the addition as follow (see, e.g., [2], [3], [4], [6]):

P+Q

Q
O = (c,0)

_P

This figure implies that the addition of Pell conics is analogous to that of
elliptic curves.

In [2], Lemmermeyer introduced an analogue of the canonical height h
for Pell conics over Q:

h(P) := lim h P),
n—o00 on

where h(Q) := h(1,z(Q)) for each rational point () on the Pell conic. In this
paper, we generalize this canonical heights to C', a Pell conic over a number
field:

Theorem 1 (Canonical heights on Pell conics over Q) For each P €
C(Q), set h(P) := h(1,z(P)).
1. The limat

~ P
h(P) = lim M0
n—oo n
does exist. B
2. Fiz v/d € Q and set the group isomorphism
¢:C@ > (@) — ——— €T
Then

We call h the canonical height on C.
Further, we give some applications of Theorem [I] in Section [ We will
study the group C(Q) by using Theorem .

1 The Weil height

In this section, we recall the definition of the classical Weil height and sum-
marize some basic properties of it which we will use later. Throughout the
section, we employ the following notation:
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o Ok: the ring integers of K;

o M?Y.: the set of all non-zero prime ideals of Of;

o MS: the set of all field homomorphisms from K to C;
o Mg = MY UMS.

Let v € Mg and x € K. We set an absolute value | - |, as

], o {#Or/0) OO, e My
T @), ve MR,

where ord, () is the order of z € K for each v € MY%, i.e., if x # 0 and
() =[5, vy* is the prime factorization, then

d, () er, U = vy for some k,
ord,(z) :=
0, v # vy for any k,

and ord,(0) := oo for all v € MY%. We note that | - |, satisfies the product
formula

H |z|, =1 forall x € K*.

vEMEK
For (zg,...,z,) € K™ we set
h S 1
(Toy .y p) = K 0O Z ogorgaé{mn}.

VEM K

It is known that the value of h(xy,...,z,) is independent of the choice of K
and, by the product formula, h(czy, ..., cx,) = h(xg,...,x,) for all c € Q~.

Thus we can consider h to be a function on the projective space P"(Q). The
function A is called the logarithmic Weil height.

Lemma 1 Let z,2q,...,20 € Q and p,p1,...,pn € N with p; < ... < p,.
Then:

1. h(l, 2%, ... 2P) = ph(l, 21, ...,2,);
2. h(1,zP ... xP) = h(1,aP");
3. h(lyxy ..o xy) < B(L,xy) + -+ R(1,x,).

Proof. Fix an algebraic number field K such that z,zq,..., 2, € K. Let
RS MK
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1. This is clear since
max{|1|y, |2]|o, ..., |22 ], } = max{|1|,, |Z1]v, - - -, |20l }P-

2. If |z|, <1, then |z

Pi <1 for all 1 <7 < n. Hence we have
max{1, |z|?*, ..., |z|?"} = 1 = max{1,|z[’"}.

If |z|, > 1, then |z

Pi <|x[P» for all 1 <i <mn, and therefore
max{1, |z|?*, ..., |z|?"} = |z[P" = max{1,|z[’"}.
3. The inequality holds since

max{|1|y, |x1 ... zplo} = max{|1|,, |z1|o - .- - |Tnlo}

< max{ |1y, |z1|o} - ... - max{|1|,, |znls}-
These complete the proof. [J

Now we recall the definition of a morphism between projective spaces:

A map F : P"(Q) — P"(Q) is called a morphism of degree d between
projective spaces if there exist homogeneous polynomials Fy, Fi,..., F, €

Q[Xo, X1, ..., X,,] of degree d such that F(P) = (Fy(P), Fi(P),...,F.(P))

for each P € P™(Q) and Fy(xo, 21, .., 2m) = Fi(zo,x1,...,Tp) = -+ =
F.(xo,21,...,2,) = 0 implies that 9y = x; = -+ = 2, = 0. We shall
frequently use the following fact:

Fact 1 (|5], p227, Theorem 5.6) Let F' : P™(Q) — P™*(Q) be a mor-
phism of degree d between projective spaces. Then there exists a constant

C > 0 such that for all P € P™(Q),
W(F(P)) - dh(P)| < C.

Corollary 1 Let fi(t),..., fu(t) be polynomials over Q of degree d. Then
there exists a constant C' > 0 such that for all x € Q,

|h(1, fi(x),..., fu(z)) —dh(1l,2)] < C.
Proof. For each 1 < i <n, we write
filt) = aw + ant + -+ + aiqt?, (aiq #0)
and set
Fi(t,u) := aju® 4+ ajtu®™' + - 4 a;qt?.
Then we know that
F:P Q)3 [z:yl— [y FAla,y) - Fulz,y)] € PYQ)
is a morphism of projective spaces of degree d. Thus we have
dh(l,z) —C < h(F([1:z]) = h(1, fi(z),..., fulz)) < dh(l,z)+ C
for a constant C' > 0 in Fact[Il O
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2 The naive height on C

In the statement of Theorem [I] we set
h(P) := h(1,x(P))

for each P = (x(P),y(P)) € C(Q). We call this the naive height on C, as
is the same case with elliptic curves.
The following lemma plays a crucial role in the proof of Theorem [T}

Lemma 2 There exists a constant D > 0 such that for all P € C(Q),
|h(P) = 2h(1,(P))| < D,
where ¢ is the isomorphism in the statement of Theorem [1]
Proof. First, we consider ¢ to be the composition of some maps. We set:
1:C(Q) 3 (x,y) — [z :y: 1] € P2(Q);
F:PXQ)3[x:y: 2+ [z +yVd:x—yVd:cz] € PQ);
U u:v:w — u/weqQ,

where U == {[u: v : w] € P2(Q) | uv = w?,w # 0}. We can easily check
that Flou(C(Q)) C U and ¢ = mo Fou: The followmg commutative diagram
holds:

L [ﬂ (2.1)

By Corollary , there exists a constant C; > 0 such that for all z € Q,
2 _ 2
‘h (1,352,:” -~ ¢ > —2h(1,z)

Now, note that for all P € C(Q), it holds that y(P)? =

we have

< (.

h <1 (PY. %) = n(1, 2(P)%, y(P)?)

Thus we obtain

|W(P) = h(u(P))] < Co, (2.2)
where Cy := (/2.
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Clearly, F' is a morphism of degree 1 between projective planes. There-
fore, by Fact , there exists a constant Cs > 0 such that for all A € P*(Q),

[7(A) = h(F(A))] < Cs. (2:3)

For all [u: v : w] € U, it holds that v = w?/u. Therefore,

h(u,v,w):h(<%)2,1,%)

=h (1, <%>2> (by Lemma [1]2)
=2h (1, %) (by Lemma [1]1)
=2h(1,w([u: v : w))). (2.4)

Finally, for all P € C(Q), we have
[h(P) = 2h((P))]
< [A(P) = h(e(P))| + [h(e(P)) — h(F o u(P))]
+ [h(F 0 1(P)) = 2h(1, (P))]
< Cp+Cs+[2h(L,mo Fou(P)) = 2h(1,0(P))| (by 2:2), -3), .4)
= 02 + 03. (by )

Therefore, setting D := C5 4+ C3, we complete the proof. [J

3 The canonical height on C

In this section, first, we shall prove Theorem

Proof. Let n € Nand P € C(Q). Since ¢ is a group isomorphism, we have

h(1, o(nP)) = h(1,o(P)")

= nh(1,p(P)). (by Lemmall]1)
Thus, for a positive constant D > 0 in Lemma 2]
h(nP D
tim |22 o1 p))| < im 2 <0,
n—o00 n n—oo M

This completes the proof. [

Further, we will give some corollaries of Theorem [T}

Corollary 2 For all P € C(Q) and m € N, it holds that
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Proof. Indeed,

- h(nmP)

h(mP) = lim =m lim = mh(P).
n—00 n n—ro0 mn
OJ
Next, we will show that A satisfies the subadditivity:
Corollary 3 For all P,Q € C(Q), it holds that
(P +Q) < h(P) + h(Q).
Proof. Since ¢ is a group isomorphism, we can write
h(P+ Q) =2h(1,0(P+Q)) (by Theorem [1}2)
=2h(1,o(P)p(Q))
< 2(1,¢(P)) + 2h(1, (Q)) (by Lemma [1}3)
= h(P) + h(Q). (by Theorem [1}2)

Finally, we will show that C'(K') has a kind of finiteness property relative
to h:

Corollary 4 1. There exists a constant D > 0 such that for all P € C(Q),
[A(P) = h(P)| < D;
2. For all algebraic number field K and constant C > 0, the set
{PeC(K)|hP)<C}
1S a finite set.

Proof. 1. This immediately follows from Lemma 2] and Theorem [I}2.

2. This immediately follows from 1 and the Northcott finiteness theorem:;
see, e.g., [1], Theorem 1.6.8. OJ

Remark. Corollary [42 holds not only for the algebraic number fields but
also for the fields with the Northcott property; see, e.g., [1], p117.
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4 Two applications

In this section, we will apply Theorem [ and its corollaries to study the
group C'(Q). However, what we will do in this section are only routines; we
can see the same discussions in most of the books on elliptic curves (see,
e.g., 5l).

First, as a simple application, we give a criterion for torsion points:
Proposition 1 P € C(Q) is a torsion point if and only if h(P) = 0.

Proof. Suppose that P is a torsion point. Then there are only finitely many
possibilities for the value of h(nP). Thus, h(P) = 0.

Conversely, suppose that E(P) = 0. Fix an algebraic number field K such
that ¢, d, z(P),y(P) € K. Note that z(mP),y(mP) € K for all m € N. By
Corollary [2| we have

h(mP) = mh(P) = 0.

According to Corollary {42, the set
Q :={QeC(K) | Q) =0}

is finite. Therefore, {mP | m € N} C € is also a finite set. Thus, for some
k € N, it holds that kP = O. O

Next, we will apply the subadditivity of h to decent.

Proposition 2 Assume that the weak Mordell-Weil theorem holds for a

subgroup G C C(Q), i.e., for some natural number m > 2, it holds that
#(G/mG) < co. Then G is finitely generated.

Proof. Let T' :== {Q1,...,Q,} be a complete system of representatives of
G/mG, M = max,<;<,{h(Q;)}, and @ := {R € G | h(R) < 14 M }. Note
that Q is a finite set by Corollary [l2. We claim that G is generated by
QUT. Take any P = Fy € G. Then there exist 1 <i; <r and P; € GG such
that Py — Q;, = mP;. Repeating this, we have {Fy, ..., P,} and {i1,...,i,}
with

Pi_1 —Qi; =mP; (foralll<j<n) (4.1)

for each n € N. Further,

h(P;) = %/E(le - Q) (by Corollary
< %(E(Pj_l) + B(Q,J)) (by Corollary
< S(h(Pya) + M), (4.2
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Using (4.2)) repeatedly, we obtain
- 1\" -
h(P,) < (§> h(P) + M.
Letting n be sufficiently large such that (%)n h(P) < 1, we achieve P, € Q.
By (4.1), we have
P=Py=2"P,+ (Qi, +2Qi, +---+2"'Q;,) € (QUT).
This completes the proof. [J
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